

CII-Energy Efficiency & De-carbonization in Pulp & Paper Industry

By Anubhav Jha

S. No	Торіс
1	About Danfoss
2	Drive Losses & Back Channel Cooling – Increase Efficiency in Drives Usage
3	One Drive for All motor Type – IM, PM, SynRM
4	Increase Life of Drives - Choose Conformal Coating

Danfoss Corporate HQ at Denmark

Danfoss Established in 1933 90 years of strong growth Market Leader in core business

Danfoss Group...3 Business Segments

Danfoss Power Solutions

#2 Market position

- 7,826 employees
- 28 factories in 12 countries
- 2.2bn EUR annual sales

Danfoss Climate Solutions

#2 Market position

- 10,792 employees
- 32 factories in 15 countries
- 2.6bn EUR annual sales

Danfoss Drives

#2 Market position

- 4,504 employees
- 10 factories in 7 countries
- 1.5bn EUR annual sales

Classified as Business

Danfoss India

Chennai Campus (on 50 acres land) LEED Platinum rated campus with 10,000 trees around 4000 Employees, 75 Distributors

Research & Testing Facilities

Dedicated Drives lab with testing capacity up to 1MW

TEST BAYS

- Load test up to 1358 Amps @400 V
- Brake test up to 700kW

Certifications

- Bureau Veritas
- UL witness test data program

POWER ELECTRONICS LAB

- Low Voltage Directive
- Performance
 test
- UL 508C

ENVIRONMENT TEST CHAMBER

• IP test up to IP54

EMC TEST LAB

 EMC precompliance test – Conducted emission only

VFD Production line

Classified as Business

Engineering Center of Excellence Solution for all Your Application needs

Danfoss Engineered Panel Solutions have proven their **market leadership with thousands of panel installations.** Our product line today includes **IP42, IP54, IP66 panels.**

Offers customized solutions to customers

- Designing and manufacturing of VFD panel up to 2 MW
- Capable of delivering up to 100 panels per month
- Full load test capacity up to 690VAC, 710KW
- ISO 9001:2015 certified (To ensure stringent quality conformance)

Back Channel Cooling

Increase Efficiency & Reliability in

Drive Systems

ENGINEERING TOMORROW

Do we evaluate Losses in VFDs?

- Evaluate Actual Heat Losses in Drives instead of going by mere %Eff.
- In case of Air conditioning evaluate Running cost .
- 1Kw of Heat loss would need additional approx 0.34KW of Airconditioning Energy.
- This Helps to assess ,Cost of Ownership

Example

	Overload	НО	NO
Typical shaft output	[kW]	30	37
Estimated power loss at rated maximum load	[W]	570	698

Classified as Business

Back Channel Cooling-IP00/IP20 enclosure with back channel

kits

Examples - Back Channel Cooling Benefits

□ Traditional case :

- 60kW need approximate 17 Ton of Air conditioning Load
- 17 Ton will consume = 0.34 X 60kw = **20kW**

Back Channel Cooling Case:

- 85% Losses/Heat is taken out of Room
- Only 15% Losses/Heat Need to be cooled
- 60kw X 0.15= 9kW Need approximate 2.5 Ton of Air conditioning Load
- 2.5 Ton will consume = 0.34X9kw=3kW
- >OPEX You save ~ 17.0kw = Rs 8.5Lacs (1kw ~ Rs50K)/Annum
- >CAPEX You save ~ 14.5Ton= Rs 4.2Lacs (1Ton ~ Rs30K)
- Maintenance You save Rs 14.5K (1Ton~1K annual)
- Power Saved 17kW, Decarbonization of 1.0Lac kG per Year

10Nos* 300Kw Drives = 3000Kw

98% System Efficiency = 60Kw Heat Loss

ENGINEERING TOMORROW

Example

Example

EN 50598 - 2

Defines Eff Classes for Frequency converters & Power Drive System (PDS) Motor-Freq converter combined system

75%

125%

Frequency converter

Defined at 90% motor

frequency and 100%

EN 50598-2

current

Motor IEC/EN 60034-30-1 Defined at 100% motor speed and 100% torque

Motor-frequency converter system Defined at 100% motor speed and 100% torque

Energy-efficiency High installed AC drive energy-efficiency is important

Installed or 'wire to air' efficiency is the trend (ASME PTC 13)

Energy-efficiency Which level of energy-efficiency difference is important?

A 110 kW 50 Hz, 4 pole motor:

IE 1 = 93.3% IE 2 = 94.5% IE 3 = 95.4% For a 110kW motor,

the energy-efficiency

difference between

IE 2 vs IE 3 is 0.9%

but price difference is ~ +20%

One VFD Drives All Motor Types

Freedom to Choose Motor Brand/Technology

• One VFD can run all 3 Types of Motors.

1-10 Motor Construction						
Option:		Function:				
		Select the motor design type.				
[0] *	Asynchron	For asynchronous motors.				
[1]	PM, non salient SPM	For salient or non-salient PM motors. PM motors are divided into 2 groups, with either surface-mounted (non-salient) or interior (salient) magnets.				
[3]	SynRM					

- Core algorithm is Software Selectable
- Shift Motor Technology ,No need to change VFD
- No New spares Inventory
- Familiar VFDs, No New training Needed

Consider Total Efficiency of System

- Choose Components which offer Best in class Efficiency to achieve Over all Best System Efficiency
- Evaluate and Avoid Unwanted Components

Conformal Coating

ENGINEERING TOMORROW

Some Corrosive Chemicals in Industries

Application	Constituent	Symbol	Sulphuric acid	Hydrogen Chloride	HCL C H
Sewage plants	Ammonia Hydrogen sulphide Active organic nitrogen	NH ₃ H ₂ S N ₂	Fertilizer manufacture	Hydrogen flouride Ammonia	HF NH ₂
Paper mills and wood pulping	Hydrogen sulphide Carbon monoxide Chlorine's Active organic nitrogen Hydrocarbons	H ₂ S CO CI, CI ₂ N ₂ C ₀ , H ₀	Steel manu- facture and ore smelting Aluminium	Hydrogen flouride Hydrogen sulphide Sulphur dioxide Hydrogen flouride	HF H ₂ S SO ₂ ,SO ₃ HF
Water treatment	Hydrocarbons	C _n , H	manufacture	Chlorine's	CI, CI ₂
Combustion of	Hydrogen sulphide Sulphur dioxide	H ₂ S	Foundries	Mercaptans Carbon	S _B , R-SH C
automative emmisions	itrogen oxides Carbon monoxied	NO _x CO	Cleaning of products	Ammonia Chlorine's	NH ₃ CI, CI ₂

Different constituents attack metals,

- e.g, Sulphur Di-Oxide attacks all metals except Noble metals
- Nitrogen, Ammonia and Ammonia Salts attack copper and brass
- Hydrogen Sulphide attacks Silver and copper

EASY. RELIABLE. FLEXIBLE.

Premature Failure Prevention

- Class 3C3 conformal coated PCBs as standard increases lifetime & reliability of drives in harsh environments
- Protects against environmental pollution, moisture, and dust
- No premature failure of drives due to harsh environment

EASY. RELIABLE. FLEXIBLE.

IEC61-721-3-3 Classifications

Environment	Unit	Class						
Parameter		3C1	3C2		3C3			
			Mean value	Max value	Mean value	Max value		
Sea salt	mg/m ³	No	Salt mist		Salt mist			
Sulphur dioxide	mg/m ³	0,1	0,3	1,0	5,0	10		
Hydrogen Sulphide	mg/m ³	0,01	0,1	0,5	3,0	10		
Chlorine	mg/m ³	0,01	0,1	0,3	0,3	1,0		
Hydrogen Chloride	mg/m ³	0,01	0,1	0,5	1,0	5,0		
Hydrogen Fluoride	mg/m ³	0,003	0,01	0,03	0,1	2,0		
Ammonia	mg/m ³	0,3	1,0	3,0	10	35		
Ozone	mg/m ³	0,01	0,05	0,1	0,1	0,3		
Nitrogen Oxides	mg/m ³	0,1	0,5	1,0	3,0	9,0		

